CORRESPONDENCE: Drought-induced decline in Mediterranean truffle harvest by U. Büntgen et al.

All correlations used in this manuscript are Pearson's Product-moment correlation coefficients. Inter-series correlations, abbreviated with the term *Rbar*, refer to grand average correlations between each time-series that was available. Significance levels were corrected for first-order autocorrelation in each time-series (i.e. we adapted the degrees of freedom in autocorrelated data).

Information on annual truffle harvestfrom Spain and France was compiled by the national Truffle Grower Associations and published through the head organization Groupement European Tuber GET, whereas data from Italywere collected and published by the National Institute for Statistics ISTAT.

For Spain see: La Federacion Española de Asociaciones de Truficultores(FETT), Reyna, S., De Miguel, A., Palanzón, C., Hernández, A. 2005. Spanish trufficulture. In: Proceedings of the Fourth International Workshop on Edible Mycorrhizal Mushrooms. Murcia, Spain, 28 November–2 December 2005. Universidad de Murcia, Murcia. P. 109.

For France see: La Fédérationfrançaise des trufficulteurs (FFT), Courvoisier, M. (1995) La production et les cours de la truffed'hiver 1903–1995. Le TrufficulteurFrancais 10, 8–9 and Courvoisier, M. (1995) La production et les cours de la truffed'hiver 1903–1995. Le TrufficulteurFrancais 13, 10–11.

For Italy see: La FederazioneNazionaleAssociazioniTartufaiTartuficoltori (FNAT), Data collected by The National Institute for Statistics ISTAT (1961-2003) and compiled in the COST action E30 report: Pettenella, D., Klöhn, S., Brun, F., Carbone, F., Venzi, L., Cesaro, L., Ciccarese, L. 2004. Economic integration of urban consumers' demand and rural forestry production.Italy's Country Report, COST Action E30. Pp.29-38.

For details on *Quercus ilex* growth in a nearby site see: Montserrat-Marti, G. et al. (2009): Summer-drought constrains the phenology and growthof two coexisting Mediterranean oaks with contrastingleaf habit: implications for their persistence and reproduction. Trees 23: 787-799.

Table S1 [Regional truffle harvest data (tones/year)as shown in figure S1 and themain text (Fig. 1).

				Spain &	Spain &	France	•	Spain	France	Italy	Spain & France	Spain & Italy	France & Italy	۵
Year	Spain	France	Italy	France	Italy	Italy	All	z-scores	z-scores	z-scores	z-scores	z-scores	z-scores	z-scores
1970	40	40	30	80	70	70	110	0.443	0.4111	0.814	0.4775	0.6803	0.7219	0.65303174
1971	60	100	5	160	65	105	165	1.4158	2.9116	-1.031	2.4907	0.5114	1.9312	1.85025661
1972	60	100	35	160	95	135	195	1.4158	2.9116	1.183	2.4907	1.5251	2.9678	2.50328835
1973	70	40	30	110	100	70	140	1.9022	0.4111	0.814	1.2325	1.694	0.7219	1.30606349
1974	60	36	30	96	90	66	126	1.4158	0.2444	0.814	0.8801	1.3561	0.5837	1.00131534
1975	40	38	35	78	75	73	113	0.443	0.3278	1.183	0.4271	0.8493	0.8255	0.71833492
1976	50	25	50	75	100	75	125	0.9294	-0.214	2.2903	0.3516	1.694	0.8946	0.97954762
1977	70	100	30	170	100	130	200	1.9022	2.9116	0.814	2.7424	1.694	2.795	2.61212697
1978	15	15	25	30	40	40	55	-0.773	-0.631	0.4449	-0.781	-0.333	-0.315	-0.5441931
1979	40	20	25	60	65	45	85	0.443	-0.422	0.4449	-0.026	0.5114	-0.142	0.10883862
1980	30	45	10	75	40	55	85	-0.043	0.6195	-0.662	0.3516	-0.333	0.2036	0.10883862
1981	40	20	50	60	90	70	110	0.443	-0.422	2.2903	-0.026	1.3561	0.7219	0.65303174
1982	40	33	15	73	55	48	88	0.443	0.1194	-0.293	0.3013	0.1735	-0.038	0.1741418
1983	30	13	30	43	60	43	73	-0.043	-0.714	0.814	-0.454	0.3425	-0.211	-0.1523741
1984	12	11	20	23	32	31	43	-0.919	-0.797	0.0758	-0.957	-0.604	-0.626	-0.8054058
1985	5	26	15	31	20	41	46	-1.259	-0.172	-0.293	-0.756	-1.009	-0.28	-0.7401026
1986	20	20	35	40	55	55	75	-0.53	-0.422	1.183	-0.529	0.1735	0.2036	-0.1088386
1987	30	60	15	90	45	75	105	-0.043	1.2446	-0.293	0.7291	-0.164	0.8946	0.54419312
1988	8	30	6	38	14	36	44	-1.113	-0.006	-0.958	-0.579	-1.212	-0.453	-0.7836381
1989	45	14	30	59	75	44	89	0.6862	-0.672	0.814	-0.051	0.8493	-0.176	0.19590952
1990	30	17	1	47	31	18	48	-0.043	-0.547	-1.327	-0.353	-0.637	-1.075	-0.6965672
1991	10	20	1	30	11	21	31	-1.016	-0.422	-1.327	-0.781	-1.313	-0.971	-1.0666185
1992	30	31	1	61	31	32	62	-0.043	0.036	-1.327	-7E-04	-0.637	-0.591	-0.391819
1993	8	22	2	30	10	24	32	-1.113	-0.339	-1.253	-0.781	-1.347	-0.868	-1.0448508
1994	4	9	30	13	34	39	43	-1.308	-0.881	0.814	-1.209	-0.536	-0.349	-0.8054058
1995	20	11	25	31	45	36	56	-0.53	-0.797	0.4449	-0.756	-0.164	-0.453	-0.5224254
1996	25	24	20	49	45	44	69	-0.287	-0.256	0.0758	-0.303	-0.164	-0.176	-0.239445
1997	80	20	24	100	104	44	124	2.3885	-0.422	0.3711	0.9808	1.8292	-0.176	0.95777989
1998	7	10	4	17	11	14	21	-1.162	-0.839	-1.105	-1.108	-1.313	-1.213	-1.2842958
1999	35	21	10	56	45	31	66	0.1998	-0.381	-0.662	-0.127	-0.164	-0.626	-0.3047481
2000	6	17	4	23	10	21	27	-1.211	-0.547	-1.105	-0.957	-1.347	-0.971	-1.1536894
2001	20	9	5	29	25	14	34	-0.53	-0.881	-1.031	-0.806	-0.84	-1.213	-1.0013153
2002	40	39	20	79	60	59	99	0.443	0.3694	0.0758	0.4523	0.3425	0.3418	0.41358677
2003	7	9	6	16	13	15	22	-1.162	-0.881	-0.958	-1.133	-1.246	-1.179	-1.262528
2004	22	27	10	49	32	37	59	-0.432	-0.131	-0.662	-0.303	-0.604	-0.418	-0.4571222
2005	14	15	8	29	22	23	37	-0.822	-0.631	-0.81	-0.806	-0.942	-0.902	-0.9360122
2006	20	28	10	48	30	38	58	-0.53	-0.089	-0.662	-0.328	-0.671	-0.384	-0.4788899

Table S2 [Regional tree growth data as utilized in figure S4 and figure S5.The term *Year* refers to the absolutely dated calendar year A.D. The term *Series* refers to the number of samples that are available during this year. The abbreviation *TRW* refers to the raw tree-ring width values (mm/yr).

Year	Series	TRW									
1970	10	1.131	1980	20	0.754	1990	20	0.953	2000	19	0.61
1971	10	2.763	1981	20	0.433	1991	20	0.714	2001	19	0.753
1972	10	2.544	1982	20	0.67	1992	20	0.456	2002	18	0.487
1973	10	2.505	1983	20	0.589	1993	20	0.582	2003	17	0.517
1974	11	1.179	1984	20	1.494	1994	20	0.516	2004	15	0.831
1975	11	0.647	1985	20	0.742	1995	20	0.436	2005	15	0.472
1976	16	0.644	1986	20	0.439	1996	20	1.001	2006	14	0.52
1977	19	1.193	1987	20	0.48	1997	20	3.218	2007	4	0.42
1978	20	0.886	1988	20	1.841	1998	19	0.687			
1979	20	1.086	1989	20	0.591	1999	19	0.975			

Figure S1 [Truffle harvest and climate change.**a**, Regional-scale truffle production with an inter-series correlation (*Rbar;* each series is correlated against each series) of 0.40 compared to variation in summer (June-August),**b**, temperature maxima (*Rbar* of 0.84), and **c**, precipitation totals (*Rbar* of 0.40). The individual time-series (tons/year) were normalized (mean of 0.0 and standard deviation of 1.0) over the common period 1970-2006.

Figure S2 [Truffle harvest and climate forcing.Relationship between regional (Spanish, French and Italian) and averaged (Mediterranean) rates of truffle production and variations in summer (June-August) climate (temperature maxima and precipitation totals) computed over the full (1970-2006), early (1970-1987) and late (1988-2006) periods.Dotted and dashed lines refer to 99.0% and 99.9% significance levels, respectively.

Figure S3 [Climaticbackground.Annual cycle of precipitation totals and temperature maxima computed for each month and the three regions in Spain (1.0-0.5°W and 41.0-41.5°N), France (0.5-1.0°E and 45.5-46.0°N) and Italy (8.0-8.5°E and 44.5-45.0°N) over the 1901-2000 period. Precipitation totals (mm) and temperature means (°C) are indicated for the June-August (JJA) summer season. Data were extracted from the griddedCRUTS3.1compilation via the KNMI climate explorer (http://climexp.knmi.nl).

Figure S4 [Tree growth and climate.**a**, Intra-annual growth variations of radial stem increment (\pm SE, *n* =10 trees) obtained from manual dendrometer bands (Agriculture Electronics Corporation, Tucson, USA) in a site in northeast Spain (Huesca, Alcubierre, 42°18'N, 0°47'W). Radial growth rates (mm/day) were calculated by subtracting consecutive readings of cumulative growth rates and dividing them by the number of days elapsed between successive readings. **b**, Correlation analysis between ring width indices and monthly mean temperatures (red) and precipitation totals (blue) computed over the 1970-2007 period and using the interval from previous to current year September.

Figure S5 [Truffle harvest and tree growth.Comparison between Spanish truffle production and variation on ring width of 20 samples from eleven oak (*Quercus ilex*) trees from a site in northeast Spain (Huesca, Alcubierre, 42°18'N, 0°47'W). The annually cross-dated and well-replicated chronology covers the 1970-2006 period. Inter-series (*Rbar*) correlation in 0.82, and mean ring width is 0.95 mm.

Figure S6 [Climate variations.Simulated (color lines) mean June-August (JJA) summer temperature (upper panels) and precipitation (lower panels) change (in °C and %) separated between Europe south (left) and north (right) of the Alpine arc between 1950and 2099 AD, and expressed as 15-year moving averages with respect to 1960-1989. The simulations were performed with 12 RCMs driven with 6 GCMs forced with the SRES A1B emission scenario within the European multi-model experiment ENSEMBLES (Linden&Mitchell 2009: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project). The solid black line indicates the multi-model mean and the grey band a range of +/- 1.0 standard deviation.

Figure S7 [Climate patterns.Projected mean **a**,June-August summer (JJA) temperature (°C) and **b**, precipitation (%) change over Europe in 2070-2099 AD with respect to the reference period 1960-1989. Shown is the ENSEMBLES multi-model mean across 12 RCMs (RCMs driven by the same GCM are averaged first to give each driving GCM equal weight) for the A1B emission scenario.